
University of Cape Town // Department of Computer Science

Honours Project Report

19 October 2007

 Marc Pelteret

Department of Computer Science
University of Cape Town

Rondebosch, 7701
South Africa

mpeltere@cs.uct.ac.za
marc@pelteret.co.za

Project Supervisor: Dr Hussein Suleman (Computer Science, UCT)

 ii

Department of Computer Science

 iii

ABSTRACT

The Cellphone Shopper project aims to make grocery shopping easier by using technology to aid
the process. Key to the project is the management of a shopping list, which is accessible by
multiple people through two interfaces: a cellphone and a Web site. This report details the de-
sign, implementation and evaluation of the Web interface.

The interface was implemented using AJAX, a Web development technique that uses
JavaScript, XML and the DOM to update Web pages without having to reload them. This
makes it possible to create highly interactive Web interfaces. The Yahoo! User Library, an
AJAX framework that provides numerous interface elements and tools, was used in constructing
the site.

The interface was evaluated through user testing and heuristic evaluation. The evaluators
were happy with the interface on the whole. The majority liked its aesthetics and thought that,
on a whole, it functioned well. However, the evaluations uncovered several usability issues. The
most serious problems are that the interface does not provide feedback to the user when it is
communicating with the server, and almost all users failed to understand and use the store layout
design page. However, these problems are rectifiable.

Despite its flaws, the system has the potential to be a useful tool for shoppers and there is a
wealth of possible features that can be added to it in the future.

Categories and Subject Descriptors
H.5.2 [Information Interfaces and Presentation]: User Interfaces – Evaluation/ methodology,
Graphical user interfaces (GUI), Interaction styles, Prototyping, User-centered design; H.3.5 [Information
Storage and Retrieval]: Online Information Services – Web-based services, Commercial services.

General Terms
Design, Human Factors, Management

Keywords
Shopping, cellphone, AJAX, interface, grocery

 iv

ACKNOWLEDGEMENTS

A special thank you to the following people for being willing to sacrifice some of their time to
help design and evaluate my project:
� Waheeda Amien
� John de Villiers
� Kerryn Evans
� Bertus Labuschagne
� Christopher Parker
� Patricia Pearson
� Ilda Ladeira
� Andrew Maunder
� Tammy Martin
� Liyaqat Mugjenkar
� Alfred Mukudu
� Brenton Tenner
� Cara Winterbottom
� Chimbala Wright
� Sebastian Wyngaard

An extra special thank you to:
� Bertus and Chris for being involved in so much of the project.
� Mr Dudley Smit of Shoprite Checkers, Rondebosch for permitting me to photograph the

store.
� Tony and Avril Morris and Renisha Deolal of Anmore Distributors for printing and

binding my project, and being so accommodating and helpful.
� Hussein Suleman for proposing such an interesting project, and for all the interesting

discussions during the year.

Finally, the biggest thank you of all goes to my family - my brothers, Jean-Paul and Eugene, and
especially my parents, Robin and Denise – for all their support and encouragement during my
stint at university. I could not have got through it without you!

 v

TABLE OF CONTENTS

Abstract.. iii

Acknowledgements ... iv

List of Figures .. vii

List of Tables... viii

1. Introduction...1

1.1. Problem Outline ...1

1.2. Overview of the System ..1

1.3. Plan of Development...1

2. Background ...3

2.1. Related Systems...3

2.1.1. Shopping Systems..3

2.1.2. List Management and Services ..3

2.2. Asynchronous JavaScript and XML (AJAX) ...4

2.2.1. Example Web Sites..5

2.2.2. Frameworks ..6

2.3. Efficient Communication..6

2.4. Summary ..7

3. Design and Implementation..8

3.1. Web Interface Features..8

3.1.1. Login (Index), Registration and News Pages..8

3.1.2. My Preferences Page ...8

3.1.3. My Lists Page ...8

3.1.4. List Editor Page ...9

3.1.5. My Reminders Page...12

3.1.6. My Shop Layouts Page ...12

3.1.7. Help ...12

3.2. Technology and Tools ...13

3.3. Design Interviews 1: Features ..13

3.4. Design Interviews 2: Interface Prototype...15

3.5. Design Interviews 3: Interface Implementation..16

 vi

3.6. Back-end Communication Protocol..17

3.6.1. Protocol Encoding ..17

3.6.2. Protocol Semantics..18

4. Evaluation..26

4.1. Design of Evaluation ...26

4.1.1. User Testing ...26

4.1.2. Heuristic Evaluation..26

4.2. Results ..27

4.2.1. User Testing ...27

4.2.2. Heuristic Evaluation..29

4.3. Discussion of Results...30

5. Conclusions..32

6. Future Work...33

7. References..35

8. Appendices ..37

8.1. Evaluation Questions...37

8.2. Heuristic Evaluation Sheet..39

8.3. Full Heuristic Evaluation Feedback ..41

 vii

LIST OF F IGURES

Figure 1 : A diagrammatic view of the system...2

Figure 2 : The classic Web application model vs the AJAX application model.................................4

Figure 3 : An activity diagram of the login system..9

Figure 4 : The My Preferences page ..10

Figure 5 : The My Lists page ..10

Figure 6 : The list editor page...11

Figure 7 : The My Reminders page..11

Figure 8 : The Shop Layouts page ...12

Figure 9 : A tooltip explaining the “edit list’s details” button of the My Lists page.13

Figure 10 : The prototype drag-and-drop interface ..13

Figure 11 : The technology prototype...14

Figure 12 : A page from the low fidelity prototype used in the second design interview15

Figure 13 : The trusted users auto-complete text box implemented in the final interface.............16

Figure 14 : The “mark item as bought” button of the final interface, showing the trolley icon...16

Figure 15 : Part of the My Preferences page of the interface implementation.................................16

Figure 16 : The “edit” button original and that of the final interface..17

Figure 17 : As the mouse is hovered over a list row, that row is highlighted...................................17

Figure 18 : Two possible XML structures for a shopping item..17

Figure 19 : Nielsen’s 10 heuristics..27

Figure 20 : Nielsen’s severity ranking scale ..27

Figure 21 : The List Edit page, showing the right-hand pane...28

Figure 22 : The “edit item” dialog. The “Note” area has been clicked, but there is no cursor....28

Figure 23 : The “Name” field of the “Add new reminder” form ..28

Figure 24 : The non-editable date field of the “Add a new reminder” form, with the calendar

access button next to it ..28

Figure 25 : The date-picking calendar of the “Add a new reminder” form......................................28

Figure 26 : The usability experts’ ratings for each heuristic ..29

Figure 27 : A selection of the heuristic evaluators’ comments ...30

Figure 28 : The problematic My Shop Layouts page..31

 viii

LIST OF TABLES

Table 1 : The user functions of the API that are used in the Web interface....................................19

Table 2 : The list functions of the API that are used in the Web interface22

Table 3 : The item functions of the API that are used in the Web interface24

Table 4 : The shop functions of the API that are used in the Web interface24

 1

1 . I NTRODUCT ION

1 . 1 . P r o b l em O u t l i n e
Grocery shopping can be a nightmare, espe-
cially when one person decides what needs to
be bought but another person has to do the
buying. Typical problems include:

� Difficulty in sharing the shopping list –
what is the list written on and where is
the list kept?

� One person adding something to the list
and another wondering who added it
and why.

� Going shopping, only to realise that the
shopping list has not been brought
along.

� The buyer not knowing which brand of
item to buy.

� Co-ordination: who does the shopping
and when?

� When the buyer gets to the store, they
do not know where items can be found
and spend a long time wandering around
the store looking for them. Also, shop-
pers may visit the same section several
times because they do not realise that
several of the items on their lists can be
found in that section.

The key aim of the Cellphone Shopper
project is to make grocery shopping easier by
using technology to aid the process. At its
core is the management of a shopping list
stored on a central server which is accessible
by multiple people through two interfaces: a
cellphone and a Web site.

The typical use case is that of one user
creating the shopping list for the current day
or week and another person viewing that list
on a cellphone while they are in the store
doing the shopping.

1 . 2 . Ov e r v i ew o f t h e
S y s t em

Cellphone Shopper has three major compo-
nents:

� A back-end, which consists of a Web
application and a database. (The task of
implementing this was allocated to Gra-
ham Hunter).

� A Web interface. (This was allocated to
the author).

� A cellphone application. (Allocated to
Tshifhiwa Ramuhaheli).

The back-end is responsible for the storage
of data used by the system. This data is
made accessible to the Web and cellphone
interfaces through a SOAP-based API. The
back-end also performs any calculations
needed by the system.
 The Web and cellphone interfaces
allow users to view and manipulate their lists
and various other features of the system. In
addition to this, the Web interface is the
starting point for new users, who must use it
to sign up for the service and create and set
up their lists.
 Figure 1 shows how these compo-
nents connect together.

The back-end’s Web application runs on
an Apache Tomcat server and accesses the
MySQL database. The Web interface is
served on an Apache HTTP server and inter-
acts with the back-end using AJAX. The
cellphone application is programmed in
J2ME and communicates with the back-end
over GPRS.

1 . 3 . P l a n o f D e v e l o pm en t
This report outlines the work the author did
on the Web interface.

It begins with some background to the
project, looking at systems related to it and
technologies that could have been and were
used in creating it.

Following that, the design of the inter-
face application and it’s implementation are
looked at. The next chapter then details how
it was evaluated and what the results were.

Finally, the report is concluded and pos-
sible future work is listed.

 2

Cellphone Interface

Web Interface

MySQL

Database

Web

App.

Server

Apache

Tomcat

Server

Web UI

App.

Apache

HTTP

Server

Web Front-end

Back-end
Cellphone

Front-end

Figure 1 : A diagrammatic view of the system

 3

2. BACKGROUND

This chapter begins by looking at related sys-
tems, specifically two shopping systems and
three Web sites that maintain lists and offer
services based on those lists.

The aim is to create an interface that is
interactive and simple and quick to use. To
do this, the AJAX Web development tech-
nique was be used. In the Section 2.2, AJAX
will be examined more thoroughly and ex-
amples of its uses given. A selection of
AJAX frameworks also will be examined.

Linked to AJAX is the topic of efficient
communication, as it directly affects interac-
tivity. This will be discussed in Section 2.3.

2 . 1 . Re l a t e d S y s t ems
In this section, two types of systems will be
examined: shopping systems and Web sites
that manage lists and offer services based on
them. They will be compared to Cellphone
Shopper to see if they have any features that
could be used in the project.

2 . 1 . 1 . S h o p p i n g S y s t e m s

Two shopping systems will be looked at: a
mobile shopping assistant, developed by Wu
and Natchetoi [36]; and Safeway UK and
IBM’s Easi-Order [4].

The mobile shopping assistant is a J2ME
application that runs on a cellphone. It al-
lows a customer to access Web Services pub-
lished by a store while they are in that store.
Example services include access to product
descriptions and promotions and the ability
to locate products within the store.

The customer begins their shopping by
creating a shopping list of products or prod-
uct categories. To help the customer find an
item, the assistant displays a floor plan show-
ing the user’s current location, the location of
the product and the shortest route.

Easi-Order is a PDA-based application
that aims to extend Safeway UK’s Collect &
Go system, an ordering service that allows
customers to place orders remotely via phone
or fax and pick up their bagged groceries at
the store the following day. Easi-Order ex-

tends this service by allowing customers to
use a PDA to place orders.

Central to the system is a personalised
shopping list, which is a list of items a cus-
tomer has previously bought. The system
also lists items on special, items that custom-
ers can buy with Safeway loyalty points and
products it recommends based on the cus-
tomers’ shopping habits. From these the
customer draws up a list of items they want
currently. They also can request items not
on these lists.

Like the mobile shopping assistant, Cell-
phone Shopper also is a J2ME application
and also displays floor plans and shopping
routes. However, it is not a store-based sys-
tem – it is accessible anywhere. And while
Cellphone Shopper provides a history of
previous shopping lists, this history is not the
focal point as it is with Easi-Order.

2 . 1 . 2 . L i s t M a n a g e m e n t a n d
S e r v i c e s

Three Web sites will be examined in order to
see what lists they maintain, how these lists
are managed and what services are offered
for or based on these lists.

Amazon.com [2] maintains some lists for
a specific user and offers several services
based on these lists. Here are just some of
the lists it maintains:
� Recently Viewed Items
� Open & Recently Shipped Orders
� Shopping Cart
� Wish List
� Gift List
� Shopping List
� Wedding Registry
� Amazon Friends
� Interesting People
� Reminders
� Listmania! Lists

Except for the first two lists, all of these
are user managed. Listmania! is a relatively
new feature. It allows users to maintain lists
of products they find interesting and share
them with others. You can view a list and
select items from it to add to your Shopping
Cart or Wish List.

One service that Amazon.com offers is
that of recommendations, where it recom-
mends products that you might be interested

 4

in buying. The products are chosen by ex-
amining the items you have purchased, items
you have told Amazon.com you own and
items you have rated, and then comparing
your activity on the site with that of other
customers. The list of recommended items
may change daily and can be quite extensive.
Again, you can choose to add items to your
Shopping Cart or to your Wish List.

Facebook [8] is based on lists. Users
maintain a list of their friends and interests
and the system tracks changes and additions
to these lists, sharing these changes with the
user’s friends through what it calls a “news
feed”. This way, users can track what their
friends are doing – what is new in their lives,
what they like and so on.

The Woolworths online shopping store
[35] allows users to maintain lists of products
that they may want to buy regularly. The aim
is to save users the tedious task of having to
add the same items to their “shopping bag”
every time. Instead, you can simply select
that list and the items are added for you, and
you can continue to add other items to the
bag before checking out.

Cellphone Shopper provides a “news
feed”-type feature. It informs users of recent
changes to the list and other news. The sys-

tem also provides a regularly-bought items
list, the aim of which is to save users time
when they are compiling their shopping lists.

2 . 2 . Asy nch r o n o u s
J a v aS c r i p t a n d XML
(A JAX)

AJAX is not a technology; it is, in fact, sev-
eral technologies that have been grouped
together to form an approach to Web appli-
cation development. As Garrett [11] ex-
plains, it incorporates:
� standards-based presentation using

XHTML and CSS;
� dynamic display and interaction using

the Document Object Model;
� data interchange and manipulation using

XML and XSLT;
� asynchronous data retrieval using

XMLHttpRequest;
� and JavaScript binding everything to-

gether.
Classic Web applications are based on a

multi-page interface model [11, 24]. In this
model (Figure 2, left), a user action on a Web
page triggers an HTTP request, which is sent
back to the server. The server performs
some actions based on this request and then

Server

Client’s Browser

Page 1 Page 3Page 2

Data New Page Data New Page

Process Data Process Data

Time

Server

Client’s Browser

Page 1

Page

Update

Process Data Process Data

AJAX

Data Results

Time

Event
Page

Update

Data Results

Event

Figure 2 : The classic Web application model vs the AJAX application model

 5

returns a Web page to the client, which re-
places the original page with the one it was
sent.

AJAX uses a different model (Figure 2,
right), namely that of a single-page interface
[11, 24]. When the user triggers an event that
leads to communication with the server,
rather than re-loading the entire page to dis-
play the results of that interaction, changes
are made to elements within the page. In this
way the user’s interaction with the Web ap-
plication is asynchronous – it is independent
of communication with the server.

The core reason for AJAX coming into
being is interactivity, which is closely associ-
ated with usability [9]. Teo et al. [32] investi-
gated the effects of the level of interactivity
of a Web site on a user’s attitude towards the
site. Their results suggest that an increased
level of interactivity has positive effects on a
user’s perceived satisfaction, effectiveness,
efficiency, value and overall attitude towards
a Web site.

Directly connected to interactivity is re-
sponsiveness, in particular, user-perceived
latency. User-perceived latency is the period
between the moment a user issues a request
and the first indication of a response from
the system [24]. It is desirable for a Web
application to be as responsive as possible.

There are two primary ways in which
user-perceived latency can be decreased: (1)
decrease the round-trip time and (2) allow
the user to interact with the system asyn-
chronously. AJAX does both.

The core part of AJAX that allows
communication without the need for the
Web page to be completely refreshed is the
XMLHttpRequest element [31]. It allows for
a delta-communication style of interaction [24],
where only state changes are communicated
between the client and server, rather than
HTTP requests with full-page responses.
Hence the round-trip time of client-server
interaction is decreased.

As mentioned above, the user’s interac-
tion with an AJAX Web application is asyn-
chronous: the client browser can make re-
quests to the server without making the user
wait before they can interact with the applica-
tion again. In addition to this, the use of
JavaScript, in particular, means that many of

the application’s responses can be handled
on the client side without involving the
server – for example, form validation and
various forms of data editing.

There are two issues worth noting with
AJAX [24]. The first is that the initial
download of the AJAX code, often referred
to as the engine, introduces some latency for
the user. However, data transfers (while us-
ing the system) are smaller and compensate
for this. Second, it is possible to burden the
client by over-using client-side functionality.

2 . 2 . 1 . E x a m p l e W e b S i t e s

There are many Web sites that make use of
AJAX. The following examples illustrate the
wide variety of uses for it.

Google Suggest [15] – as you type into
the search box, the system offers suggestions
in real-time on how to complete what you are
typing. Many other Google sites make use of
AJAX, including Google Maps [14] (its pan
and zoom functions adjust your view using
AJAX), Google Mail [13] (which provides,
among other things, real-time chat using
AJAX) and Google Calendar [12] (which uses
AJAX extensively – for example, to provide
the user with the ability to drag events from
one timeslot to another).

Live Search [23] – the image search of
Microsoft’s Live Search makes extensive use
of AJAX. The results of a search are re-
turned as thumbnails. The number of
thumbnails initially returned depends on the
size of the screen on which the Web page is
being viewed. As the user scrolls down,
more images are dynamically added to the
page. This way all the returned images can
be shown on one page, but the user does not
wait for all the thumbnails to download –
they are downloaded only when the user
scrolls to them. When the user hovers over a
thumbnail, a window pops up and displays a
slightly enlarged version of the image as well
as details such as its filename, dimensions,
file size and URL. Finally, the site has a
“Scratchpad” that allows the user to keep
track of particular images by dragging-and-
dropping images from the search results on
to it.

Panic Goods [29] – this Web site sells t-
shirts. You select the t-shirts you like by

 6

dragging them to your shopping cart at the
bottom of the page.

LiveMarks [22] – this site allows you to
watch bookmarks in real-time as they are
added to del.icio.us, a social bookmark Web
site where users can maintain their book-
marks and share them with others.

AjaxTrans [1] – this system translates
from one language to another as you type,
sentence by sentence.

2 . 2 . 2 . F r a m e w o r k s

Web development is a complex task. Devel-
opers have to deal with issues such as con-
tent presentation, loading times, aesthetics,
navigation, interactivity and security [6]. One
of the biggest problems is browser compati-
bility, which affects, among other things, the
way CSS displays and JavaScript operates.
Quite often, developers have to use non-
standard tricks – “hacks” – to get around this
issue, or they simply have to accept the dif-
ferences.

Frameworks aim to simplify the task of
development. More specifically, the goals of
these frameworks are to [24]:
� hide the complexity of developing AJAX

applications – which is a tedious, diffi-
cult, and error-prone task,

� hide the incompatibilities between dif-
ferent Web browsers and platforms,

� hide the client/server communication
complexities, and

� achieve rich interactivity and portability
for end users, and ease of development
for developers.
To achieve these goals, the frameworks

provide a library of user interface compo-
nents and a development environment to
create re-usable custom components.

There are numerous AJAX frameworks:
AJAX Patterns [10] lists more than 200 of
them at the time of writing. Because there
are so many, only a small selection will be
looked at here. Specifically, the following
frameworks listed in Wayner and Turner, and
Wang [34, 33]: Direct Web Reporting, Dojo,
Google Web Toolkit, Microsoft Atlas, Open
Rico and Prototype, Prototype and Scriptacu-
lous, Yahoo! User Interface Library and
Zimbra’s Kabuki AJAX Toolkit.

A framework that is pure JavaScript may
be best for the project, so Direct Web Re-
porting and Google Web Toolkit, which are
both Java-based, are not appropriate. Micro-
soft Atlas is also not appropriate because it is
deeply integrated with Microsoft’s .NET en-
vironment and Cellphone Shopper is not run
in a solely Microsoft environment.

While all the remaining frameworks are
adequate, it was decided that the Yahoo! User
Interface Library is the best choice. Dojo
has a broad collection of widgets, but its
documentation has gaps in it [34]. Zimbra’s
collection of widgets is basic and its docu-
mentation is also lacking. The combination
of Open Rico and Prototype lacks some
pragmatic tools, such as a tree. Scriptacu-
lous also lacks complete documentation. The
Yahoo! Library has good documentation
(that contains many examples and a great
deal of code), contains many of the standard
tools (such as an animation library and a tree
collection) and is easy to work with [34].

It is possible to use multiple libraries, ei-
ther in part or in whole. So should the cho-
sen framework lack something that another
has, it can be augmented.

AJAX was an appropriate approach to
take for creating the Cellphone Shopper Web
interface. It offers interactivity and speed,
two elements that are important for a service
that will be used on a regular basis. The
availability of various GUI “widgets” in the
Yahoo! framework facilitated the building of
an interface that is easy for the novice user
and quick for the experienced user.

Linked to the speed of an AJAX ap-
proach is the efficiency of the underlying
communication protocol. This will be exam-
ined in the next section.

2 . 3 . Ef f i c i e n t
C ommun i c a t i o n

Efficient communication is important for a
Web application, particularly an AJAX one.
In this section, four light-weight communica-
tion protocols will be looked at: XML-RPC,
SOAP, REST and JSON-RPC.

XML-RPC is remote procedure calling
using HTTP as the transport and XML as
the encoding [37]. It is designed to be simple

 7

while allowing complex data structures to be
transmitted.

SOAP is intended for exchanging struc-
tured information in a decentralized, distrib-
uted environment [16]. Its key aims are sim-
plicity and extensibility. SOAP messages are
encoded in XML and can be transmitted
over a variety of underlying transport proto-
cols.

SOAP is the successor to XML-RPC. It
works with objects rather than remote pro-
cedure calls, but has a greater overhead than
XML-RPC [21].

Both XML-RPC and SOAP are widely
supported, having been implemented in
many languages for many operating systems
and environments, both open source and
commercial.

Representational State Transfer (REST)
is an architectural style, not a protocol.
However, it is very often referred to in pro-
tocol discussions [38, 25, 30]. In this con-
text, it is used loosely and refers to the send-
ing of data over HTTP without the use of a
particular message encoding (you can use
any, including an XML-based format) [17].

JSON-RPC is an RPC based on
JavaScript Object Notation (JSON), which is
used to encode its messages [3]. HTTP is
used to transmit the messages. JSON is data-
orientated, is based on a subset of JavaScript
and is easy for humans to read and write [18].
It is also simpler and smaller than XML [20].

JSON is (a) a native format for
JavaScript, which AJAX uses, and (b) smaller
than XML. However, it is not as widely sup-
ported as XML. While this lack of support is
not a problem for a Web interface, particu-
larly one based on AJAX, it is a problem for
other interfaces, such as a cellphone. XML
has far wider support.

The online discussion on XML-RPC vs
SOAP vs REST has been a long-running one
that appears to have no definitive winner [38,
25, 30]. It appears that SOAP is somewhat
verbose, but XML-RPC may be no better.
Some people argue that XML-RPC has wide-
spread support because it has existed for a
number of years, but SOAP appears to be
just as widely supported. Many think that a
REST approach is enough (using XML, or

maybe even SOAP, for encoding the mes-
sage).

With no definitive best-choice, it is up to
the developers of a particular project to de-
cide what they want to implement. It is pos-
sible to support multiple protocols, so it is
not the case that one has to be chosen over
all the others.

2 . 4 . Summar y
This chapter looked at the techniques and
technologies that were used in developing the
Web end-user interface for the Cellphone
Shopper system.

Studying some shopping systems and
Web sites that maintain lists provided ideas
for features that could be implemented in the
project to aid and inform users. In particu-
lar, the system includes “news feed” and a list
of regularly bought (“favourite”) items.

The Web development technique known
as AJAX was used in the Web interface. The
technique’s core aims of interactivity and
speed are important to Cellphone Shopper.
The Yahoo! User Interface Library was cho-
sen from of the above selection of AJAX
frameworks for use in the project. It was
selected because of its extensive documenta-
tion and numerous examples.

Linked to AJAX is the topic of efficient
communication. Four protocols were exam-
ined: XML-RPC, SOAP, REST and JSON-
RPC. The project team decided to use XML,
given that it offers structure and there XML
parsers available on the majority of pro-
gramming platforms. It is possible to include
support for the other protocols at a later
stage, if required.

 8

3. DESIGN AND
IMPLEMENTAT ION

This chapter looks at how the Web interface
was designed and then implemented.

It begins by listing the interface’s final
features and then briefly discusses the tech-
nology and tools used to create the interface.

The design involved a wide range of
people and consisted of three phases, which
are discussed in sections 3.3 to 3.6.

Finally, section 3.6 describes the protocol
used to communicate with the back-end.

3 . 1 . Web I n t e r f a c e
F e a t u r e s

This section explains the major features of
the system, looking at each page in the site.

3 . 1 . 1 . L o g i n (I n d e x) , R e g i s t r a t i o n
a n d N e w s P a g e s

The client-side login system been imple-
mented entirely in AJAX. It uses the server
to verify the user’s password, but otherwise
manages the user’s login itself. It uses cook-
ies to track when a user is logged in and
which user they are. Only if they are logged
in can they access any of the core Web pages.
If they try to access any of the pages directly,
the system re-directs them to the login page.

The user’s password is encrypted using
the MD5 algorithm. This hash is what is
sent to and stored on the server, so only the
user knows their password (the system ad-
ministrators, for instance, cannot recover it).

If the user has not registered, they may
choose to do so by clicking on the “register”
link that is on the login page. This will take
them to Registration page, which has a form
where they specify their various details and
select a unique user name. The system
searches through its database to ensure that
the user’s chosen user name has not been
selected and informs the user if it has. The
registration process will not complete unless
the entire form has been completed and a
unique user name has been entered.

The first time a user logs in they will be
directed to the My Preferences page (de-

scribed below). Subsequent logins will direct
them to the My News page. This presents
them with a list of news items that tells them
what lists have been modified since their last
log in (and by whom) and what reminders
(described below) are due.

Figure 3 shows a UML activity diagram
of the login system.

3 . 1 . 2 . M y P r e f e r e n c e s P a g e

On this page (Figure 4), users control con-
figuration options that are particular to them.
They can change their various details (name,
user name, e-mail address, cellphone number
and password) and choose their “favourite
shops” and “trusted users”.

Favourite shops are shops where the
user usually buys goods from. These shops
can be associated with a list or item. Most
people will buy from only a few shops, so
rather than having them search through all
the shops in the system (which could be
hundreds in a full system available to the
whole country) each time they add a list or
item, they select only those they are most
likely to use. So when they add a list or item,
they select from a much shorter list, thus
saving them time.

Trusted users are other users that the
user might permit to access their lists. The
aim of this feature is the same that of favour-
ite shops: to save the user time by shortening
their list of choices when adding a list.

3 . 1 . 3 . M y L i s t s P a g e

Users can have more than one shopping list.
The My Lists page (Figure 5) allows them to
manage their lists. They can add and delete
lists, as well as edit each list’s details (the list’s
name and the default favourite shop associ-
ated with it).

Lists have access rights. The owner of a
list can choose which trusted users may ac-
cess their list and may assign rights to those
users. There are three rights: view the items
in the list, add items to the list and delete
items from the list. Any user given access to
the list can view it, but the other two rights
must be assigned by the owner.

Each user has a number of special lists.
The aim is to save the user time: instead of
manually entering a new item that they have

 9

added before, they can simply select it from
one of the special lists. These lists are:
� Favourites – items that the user often

adds. The user maintains this list.
� Previous items – a system-generated his-

tory of all items the user has previously
added.

� Deleted items – any items the user has
added and then removed during their
current session.

3 . 1 . 4 . L i s t E d i t o r P a g e

This page (Figure 6) allows the user to man-
age the items in a list. They can add, delete
and edit items.
Items can be marked in various ways:
� Each item can be assigned a category to

which it belongs and a shop from which
it should be bought.

� An item can be flagged as being private,
so that only the user who added it and

the list owner can see it. The user who
added the item may not want other users
with access to the list to be able to see it,
either because it is private by nature or
for some other reason (e.g., the item
might be a gift for someone else who
can view the list).

� A user might be unsure as to whether or
not an item is needed, so they can tag an
item as “uncertain” and someone else
who has access to the list can decide
whether or not it is needed.
Each item can have a note included with

it. Items can also be checked off as they are
bought. When this happens, they are moved
off the current list and into the item history.

Lists can be viewed in two ways while
editing: alphabetically and by the categories
to which the items belong.

.

Figure 3 : An activity diagram of the login system

 10

Figure 4 : The My Preferences page

Figure 5 : The My Lists page

 11

Figure 6 : The list editor page

Figure 7 : The My Reminders page

 12

Figure 8 : The Shop Layouts page

3 . 1 . 5 . M y R e m i n d e r s P a g e

Users can set reminders on this page (Figure
7). The idea is for users to be able to have
the system remind them about tasks while
shopping. For example, Pick ‘n Pay allows
customers to pay utility bills at its stores, so
the user could set a reminder to settle the
electricity bill while buying groceries.

Reminders can also be deleted and their
details edited after they have been added.

Each reminder has a “notification pe-
riod”: the number of days of prior warning
the system gives the user before the reminder
is due. Once the date of the reminder has
passed, it is removed from the system.

There is also an option to show the re-
minder on the user’s shopping lists as an
item. This is primarily to allow someone
viewing the shopping list on a cellphone to

see the reminder without having to go out of
the list and into a separate screen.

3 . 1 . 6 . M y S h o p L a y o u t s P a g e

A shop’s layout is used to order a list’s items
in by section while using the list on the cell-
phone. The aim is to help users locate items
within the store. On this page (Figure 8),
users can view, add and edit shop layouts. A
shop layout consists of a number of aisles,
each of which contains a number of item
categories.

3 . 1 . 7 . H e l p

Tooltips are used frequently throughout the
system, so that when a user hovers the
mouse cursor over a button (for example)
they are told what the button does. Figure 9
shows an example of this.

 13

Figure 9 : A tooltip explaining the “edit
list’s details” button of the My Lists

page.

3 . 2 . Tech no l o g y a n d
T o o l s

The Web interface is a client-side application
created using HTML, Cascading Style Sheets
(CSS), JavaScript and the Document Object
Model (DOM) built into all browsers. It is a
combination of hand-written code and func-
tionality provided by the Yahoo! User Inter-
face Library.

A prototype was built to test the tech-
nologies (Figure 11). The lists are obtained
from a stub PHP script which is meant to
simulate the server. It generates a list of
items based on which list (the main list, list A
or list B) is requested and returns that list as
an XML document. The list is then parsed
on the client side by the application and dis-
played. The main list can be manipulated:
items can be removed from it, new items can
be created and added to it, and items from
lists A and B can be added to it.
 The prototype is very simple, but
was intended only to check that the tech-
nologies are adequate for the project and to
get an idea of how they work. It also served
to demonstrate an idea that wouldn’t work.
The initial plan was to make use of the drag-
and-drop functionality provided by the Ya-
hoo! toolkit. However, while creating the
prototype it was discovered that the interface
(Figure 10) became very slow when the drag-

and-drop list contained a large number of
items.

Figure 10 : The prototype drag-and-drop

interface

3 . 3 . Des i g n I n t e r v i ews 1 :
F e a t u r e s

The above-mentioned features were obtained
through a combination of project team
brainstorming and design interviews involv-
ing potential users and usability experts. This
section and the next two detail the design
interviews.

Cellphone Shopper is aimed at anyone
who uses a shopping list, whether they are in
charge of it or simply use it in some fashion.
This means that the system needed to be de-
signed to be used by a wide range of users
from many different classes – young and old,
parents and children, comfortable with tech-
nology or not, and so on.

 14

User-centred design is the key to design-
ing such a system. Total user experience
drives the design [26] – i.e., users and their
tasks are what is focused on. Users are in-
volved in all stages of the product’s devel-
opment and continuous user input ensures
that the team has a good understanding of
what users do and want to do, and how well
the design satisfies those tasks.
 The first stage of the process was
user requirement gathering. Users were in-
terviewed to determine what they required
and wanted to see in a system like Cellphone
Shopper. A typical interview proceeded as
follows:
� The interviewees were questioned on

their current shopping behaviour and
how they presently manage their shop-
ping list.

� The proposed features for Cellphone
Shopper were explained and questions

were asked about how the interviewees
would use these features.

� To round off, interviewees were asked
for their opinion on the proposed sys-
tem and they were asked to suggest any
other features they would like to see in
it.
The interviews provided many pieces of

useful information:
� People are interested in having a system

like Cellphone Shopper. The primary at-
traction is the ability to use a cellphone
to manage a list because of the conven-
ient access. For instance, one user ex-
pressed her frustration at arriving a shop
and realising that she had either left her
list at home or in the car. She never,
however, forgets her cellphone.

� Most of those who were interviewed
shop at more than one store.

Figure 11 : The technology prototype

 15

� One user has two lists: one for groceries,
the other for non-grocery items.

� The ability to order the shopping list by
section while using the list on the cell-
phone is a feature that all the interview-
ees found interesting and felt would be
very useful. The idea is for the shopping
list to be ordered such that the shopper
can move through the store section by
section, starting from the store’s en-
trance. One person supported this by
saying that they found it irritating that at
times they have to return to a section
they have already visited because they
neglected to get an item while they were
in the section. One interviewee, how-
ever, works a little differently: instead of
moving through the store from the en-
trance to the exit, he moves through it
by how he stacks items in his trolley. So
he would like to be able to order the sec-
tions for himself.

� In general, those interviewed do not
want the system to automatically add
items they regularly buy – they would

prefer to have full control. The reason,
for one person, is that they could end up
buying an item when they do not need it,
because the system would not know that
they still have some of that item left.

3 . 4 . Des i g n I n t e r v i ews 2 :
I n t e r f a c e P r o t o t y p e

After interviewing people who use shopping
lists and drawing up a list of features that
would be included in the system, the cell-
phone and Web interfaces were constructed.

In order to test the interface designs, a
focus group was organised. The group con-
sisted of four volunteer Computer Science
students, two from Masters and two from
Honours, each with interaction design train-
ing. The idea was to have a group of “ex-
perts” scrutinise and critique the interfaces.

The designs the group was shown were
low fidelity paper prototypes which were
drawn in Microsoft Visio (Figure 12 shows
an example page). The group was walked
through each screen of each interface and

My Lists

Groceries Favourites

 x Bread

 x Milk

1

3

 Butter

 Cheese

x

x

Order list:

Add new item:

Name:

Category:

Shop:

Name

Pick ‘n Pay, Pinelands

Category

Add to Favourites List Private Item

Uncertain whether needed

Add Clear

...

Alphabetically
By shop

By category

List: Other

Favourite Items

Previous Items

Private Items

Deleted Items

 Cellphone Shopper

My News

My Lists

My Reminders

My Shop

Layouts

My Preferences

Logged in as User X

Log Out

Added by User Y at 13:42 on 30/08/2007

N

Figure 12 : A page from the low fidelity prototype used in the second design interview

 16

given the chance to express views on each
screen’s design and offer any ideas or advice
they could think of.

Like the shopping list user interviews,
the session was very constructive. Again, a
number of new ideas were offered. Some of
these ideas were implemented in the system,
while others have become suggestions listed
under Future Work (Chapter 6).

The following are two major ideas the
group suggested that were implemented:
� Trusted users, who can be added via an

auto-completed text box (i.e., rather than
one user having to type in the full name
or e-mail address of another to add them
as a trusted user, they can simply start
typing in those details and the system
will suggest how to complete what they
are writing). Figure 13 shows the final
interface’s auto-completed text box.

Figure 13 : The trusted users auto-

complete text box implemented in the
final interface

� The use of icons, which were not pre-

sent in the prototypes. The group as a
whole strongly believed that they should
be used. The group also recommended
that common icons be used in both in-
terfaces – for instance, a trolley icon for
the interface element that the user uses
to mark an item as bought (Figure 14).

Figure 14 : The “mark item as bought”
button of the final interface, showing the

trolley icon

3 . 5 . Des i g n I n t e r v i ew s 3 :
I n t e r f a c e
I m p l em en t a t i o n

The cellphone and Web interfaces were con-
structed over the three weeks following the
second design interview. A third design in-

terview was then organised to evaluate the
results. Again, four “experts” evaluated the
system: the two Masters students involved in
the second design interview and two Hon-
ours students (not the two who originally
participated; they were unfortunately unavail-
able).

The Web interface that was presented
was an interactive “shell”. Most of the core
pages were implemented and their major in-
terface elements were present and could be
interacted with. For instance, on the My
Reminders screen the user could use a form
to add a reminder and its details would be
listed on the screen; this reminder could then
be edited and its details would be updated on
the screen immediately. The site had no
back-end connectivity, though it did call a
stub PHP script for two example lists.

The group made several constructive
criticisms and offered several useful sugges-
tions:
� The form of the My Preferences page

“grows” when the user wants to add an-
other shop – in Figure 15, the fourth
row of favourite shop combo boxes was
added when the “Add Another Shop”
button was pressed and the fourth text
box of the trusted users was added when
“Add Another User” was pressed. It
was suggested that instead of doing this,
one should rather have one form ele-
ment for each section and above it show
a list of the shops or users the user has
already added. This is what was done in
the final implementation (see Figure 4).

Figure 15 : Part of the My Preferences
page of the interface implementation

 17

� The edit icon on the My Reminders and
My Lists pages should be changed be-
cause it isn’t clear showing what the but-
ton is for. Figure 16 shows the original
button and what it was changed to in the
final interface.

Figure 16 : The “edit” button original
and that of the final interface

� The “Add as item on shopping list” op-

tion on the My Reminders page should
be select by default. The group felt that
reminders would be more useful in gen-
eral if they appeared on the shopping
list..

� In the various lists, the row that the
mouse cursor is over could be high-
lighted to help show the user which item
in the list they are manipulating with the
various buttons on the right (Figure 17).

Figure 17 : As the mouse is hovered over

a list row, that row is highlighted

One of the group was concerned about
the fact that as a shopping list grows, the
“add new item” form is pushed off the
screen. They suggested that an inline frame
(which displays one Web page inside an-
other) be used for the list. However, as
someone else in the group pointed out, the
problem is that there is not enough screen
space anyway. The result of using an inline
frame would be that only a few items would
appear on the list and the user would be
forced to scroll anyway – i.e., the choice is
between making the user scroll an inline
frame or scroll the browser window. With
that being the case, the group felt it was best
to leave things as they are and not use an
inline frame.

3 . 6 . Back- end
C ommun i c a t i o n
P r o t o c o l

3 . 6 . 1 . P r o t o c o l E n c o d i n g

The back-end is a Web Service programmed
in Java and provides a REST interface, which
the Web interface uses to communicate with
over HTTP. Data are retrieved using GET
requests and sent using POST. Parameters
are URL-encoded for both methods.

The responses are encoded in a custom
XML data format. The aim of the custom
format is to keep the data structured so that
it can be parsed by an XML parser, some-
thing which is available for most mobile- and
computer-based programming languages, but
make the structure as lean as possible so that
messages do not become bloated.

XML Listing 1

<Items><I id="33" name="Butter" quantity="1" category="Butter"
shop="Checkers, Rondebosch, Riverside Centre" shopID="1" private="0"
uncertain="0" user="UserX" userID="2" date="11-10-2007">Ran out
today.</I></Items>

XML Listing 2

<Items><I id="33" n="Butter" q="1" c="Butter" sh="Checkers, Rondebosch,
Riverside Centre" sid="1" p="0" u="0" usr="UserX" uid="2" dt="11-10-
2007">Ran out today.</I></Items>

Figure 18 : Two possible XML structures for a shopping item

 18

So, for example, instead of encoding a
shopping list item as is done in XML listing 1
in Figure 18, it is encoded using the format
of XML listing 2. While the differences may
seem trivial, the second list (which has 172
characters, including whitespace) is approxi-
mately 20% smaller than the original (which
has 214 characters).

Streamlining the XML response is im-
portant for the cellphone in particular, due to
the general lack of broadband connectivity.

The Web interface uses the Yahoo! User
Interface library Connection Manager utility
for communicating with the server. This
utility provides a simplified interface to the
Web browser’s XMLHttpRequest object.

3 . 6 . 2 . P r o t o c o l S e m a n t i c s

The API for communicating with the back-
end is partitioned into four categories: user
operations, list operations, item operations
and shop operations. The operations used
by the Web interface are summarised as fol-
lows and listed in detail in Table 1 to Table 4.

User operations

� User_AddReminder – adds a reminder
to the user’s list

� User_AddShop – adds a shop to a user’s
favourite shops list

� User_AddTrustedUser – adds a user to
a user’s trusted user list

� User_ChangePassword – changes the
user’s password

� User_Create – creates a new user
� User_DeleteReminder – deletes a

user’s reminder
� User_DeleteShop – removes a shop

from a user’s favourite shops list
� User_DeleteTrustedUser – removes a

user from a user’s trusted user list
� User_Details – retrieves a user’s de-

tails (user name, e-mail address, etc.)
� User_Edit – modifies a user’s details
� User_EditReminder – modifies a re-

minder’s details
� User_GetDeletedItems – retrieves a

list of items the user has deleted from
their shopping lists in the current ses-
sion

� User_GetLists – retrieves a list of a
user’s shopping lists

� User_GetNotifications – retrieves a
user’s notifications (news)

� User_GetReminders – retrieves a list of
a user’s reminders

� User_GetShops – retrieves a user’s fa-
vourite shops list

� User_GetTrustedUsers – retrieves a
user’s trusted user list

� User_GivePermission – grants a user
access to a shopping list

� User_Login – logs a user into the sys-
tem

� User_Logout – logs a user out of the
system

� User_RevokePermission – revokes a
user’s access to a shopping list

� User_SearchUsers – searches for a
particular user of the system

List operations

� List_AddExistingItems – adds an
item that exists in the system to a list

� List_AddItems – creates and adds
items to a shopping list

� List_Create – creates a new shopping
list

� List_Delete – deletes a shopping list
� List_DeleteItems – deletes items

from a shopping list
� List_Edit – modifies the details of a

shopping list
� List_EditItems – modifies the details

of an item in a shopping list
� List_EditQuantity – modifies the

quantity of an item in a shopping list
� List_GetItems – retrieves a list of the

items in a shopping list
� List_GetUsers – retrieves a list of us-

ers who have access to a shopping list
Item operations

� Item_CheckoutItems – marks items as
bought

� Item_GetCategories – retrieves a list
of possible item categories

Shop operations

� Shop_AddLayout – adds a shop layout
� Shop_GetAll – retrieves a list of shops
� Shop_GetLayout – retrieves a shop’s

layout

 19

Table 1 : The user functions of the API that are used in the Web interface

User Operations

User_AddReminder(UserId,
ReminderName, ReminderDescription,
ReminderDate, ReminderPeriod,
ReminderItem)

User_AddShop(UserId, ShopId)

Function: adds a reminder to the user’s list Function: adds a shop to a user’s favourite
shops list

Request Type: POST Request Type: POST

Page Used On: Reminders Page Used On: Preferences

Example Response:
<id>129</id>

Example Response:
<id>1</id>

User_AddTrustedUser(UserId,
SecondUserId)

User_ChangePassword(UserName,
UserPassword, NewUserPassword)

Function: adds a user to a user’s trusted user
list

Function: changes the user’s password

Request Type: POST Request Type: POST

Page Used On: Preferences Page Used On: Preferences

Example Response:
<id>1025</id>

Example Response:
1
Note: This response should be in XML, bust is not
due to oversight. This needs to be corrected in the
future.

User_Create(UserName, UserPassword,
UserFirstName, UserSurname,
UserEmail, UserCellphone)

User_DeleteReminder(UserId,
ReminderId)

Function: creates a new user Function: deletes a user’s reminder

Request Type: POST Request Type: POST

Page Used On: Register Page Used On: Reminders

Example Response:
<id>1025</id>

Example Response:
<id>128</id>

User_DeleteShop(UserId, ShopId) User_DeleteTrustedUser(UserId,
SecondUserId)

Function: removes a shop from a user’s
favourite shops list

Function: removes a user from a user’s
trusted user list

Request Type: POST Request Type: POST

Page Used On: Preferences Page Used On: Preferences

 20

Example Response:
<id>1</id>

Example Response:
<TrustedUsers>
<u id="1000" n="bobjones"
f="Robert" s="Jones"
e="bob@jones.com"
c="5554202"></u>
...
</TrustedUsers>

User_Details(UserId) User_Edit(UserId, UserName,
UserFirstName, UserSurname,
UserEmail, UserCellphone)

Function: retrieves a user’s details (user name,
e-mail address, etc.)

Function: modifies a user’s details

Request Type: GET Request Type: POST

Page Used On: Preferences Page Used On: Preferences

Example Response:
<u id="3" n="HunterU" f="Graham"
s="Hunter" e="hunter@test.com"
c="55542024"/>

Example Response:
1
Note: This response should be in XML, bust is not
due to oversight. This needs to be corrected in the
future.

User_EditReminder(UserId,
ReminderId,ReminderName,
ReminderDescription, ReminderDate,
ReminderPeriod, ReminderItem)

User_GetDeletedItems(UserId)

Function: modifies a reminder’s details Function: retrieves a list of items the user has
deleted from their shopping lists in the
current session

Request Type: POST Request Type:
GET

Page Used On: Reminders Page Used On:
List Edit

Example Response:
<id>128</id>

Example Response:
<Items><I id="-1" n="Meat" q="0"
c="" sh="" sid="-1" p="0" u="0"
usr="null" uid="-1" dt="15-10-
2007">_</I></Items>
Note: The “_” indicates a blank note. There was a
problem parsing a parameter string with a blank note
parameter on the back-end. This is meant to serve as
a temporary fix until the issue can be resolved in the
future.

User_GetLists(UserId) User_GetNotifications(UserId)

Function: retrieves a list of a user’s shopping
lists

Function: retrieves a user’s notifications
(news)

Request Type: GET Request Type: GET

 21

Page Used On: News, Lists Page Used On: News

Example Response:
<Lists>
<list id="3" uid="3" n="newlist"
access="111" s="Checkers,
Rondebosch, Riverside Centre"
sid="1"/>
<list id="4" uid="3"
n="Favourites" access="111"
s="Checkers, Rondebosch,
Riverside Centre" sid="1"/>
<list id="2004" uid="3"
n="PreviousItems" access="111"
s="" sid="-1"/>
...
</Lists>

Example Response:
<Notifications>
<Updates/>
<Reminders>
<r id="128" n="Electricity"
d="Pay bill" date="16-10-2007"
p="3" i="1"/>
</Reminders>
</Notifications>

User_GetReminders(UserId) User_GetShops(UserId)

Function: retrieves a list of a user’s reminders Function: retrieves a user’s favourite shops
list

Request Type: GET Request Type: GET

Page Used On: Reminders Page Used On: Lists, List Edit, Preferences

Example Response:
<Reminders>
<r id="128" n="Electricity"
d="Pay bill" date="16-10-2007"
p="3" i="1"/>
</Reminders>

Example Response:
<Shops>
<Shop id="1" n="Checkers"
l="Riverside Centre" c="Cape
Town" s="Rondebosch"/>
...
</Shops>

User_GetTrustedUsers(UserId) User_GivePermission(UserId,
SecondUserId ListId, AccessRights)

Function: retrieves a user’s trusted user list Function: grants a user access to a shopping
list

Request Type: GET Request Type: POST

Page Used On: Lists, Preferences Page Used On: Lists

Example Response:
<TrustedUsers>
<u id="505" n="mark" f="Mark"
s="Jacobs" e="now@then.com"
c="4534576"/>
...
</TrustedUsers>

Example Response:

<id>1000</id>

User_Login(UserName,UserPassword) User_Logout(UserId)

Function: logs a user into the system Function: logs a user out of the system

Request Type:
POST

Request Type: GET

 22

Page Used On:
Index (log in page)

Page Used On: All except Index

Example Response:
<u id="1006" n="harry" f="harry"
s="harry" e="harry"
c="2345324"></u>

Example Response:
<id>3</id>

User_RevokePermission(UserId,
SecondUserId, ListId)

User_SearchUsers(SearchString,
UserId)

Function: revokes a user’s access to a
shopping list

Function: searches for a particular user of the
system

Request Type: POST Request Type: GET

Page Used On: Lists Page Used On: Register, Preferences

Example Response:
<id>1000</id>

Example Response:
<Users>
<u id="1000" n="bobjones"
f="Robert" s="Jones"
e="bob@jones.com"
c="5554202"></u>
...
</Users>

Table 2 : The list functions of the API that are used in the Web interface

List Operations

List_AddExistingItems(ListId,
UserId, ItemIdList)

List_AddItems(ListId, UserId,
ItemNameList, ItemCategoryList,
ItemNote, ItemUncertain,
ItemPrivate, ShopId, ItemQuantity)

Function: adds an item that exists in the
system to a list

Function: creates and adds items to a
shopping list

Request Type: POST Request Type: POST

Page Used On: List Edit Page Used On: List Edit

Example Response:
<id>1664</id>

Example Response:
<id>1663</id>

List_Create(ShopId, ListName,
UserId)

List_Delete(ListId, UserId)

Function: creates a new shopping list Function: deletes a shopping list

Request Type: POST Request Type: POST

Page Used On: Lists Page Used On: Lists

Example Response:
<id>2085</id>

Example Response:
<id>2086</id>

 23

List_DeleteItems(ListId, UserId,
ItemIdList)

List_Edit(ListName, ListId, UserId,
ShopId)

Function: deletes items from a shopping list Function: modifies the details of a shopping
list

Request Type: POST Request Type: POST

Page Used On: List Edit Page Used On: Lists

Example Response:
<id>1449</id>

Example Response:
<id>2085</id>

List_EditItems(ListId, UserId,
ItemIdList, ItemNameList,
ItemCategoryList, ItemNote,
ItemUncertain, ItemPrivate, ShopId,
ItemQuantity)

List_EditQuantity(ListId, UserId,
ItemIdList, ItemQuantity)

Function: modifies the details of an item in a
shopping list

Function: modifies the quantity of an item in
a shopping list

Request Type: POST Request Type: POST

Page Used On: List Edit Page Used On: List Edit

Example Response:
<id>1663</id>

Example Response:
<id>1474</id>

List_GetItems(ListId, UserId,
OrderBy)

List_GetUsers(ListId, UserId)

Function: retrieves a list of the items in a
shopping list

Function: retrieves a list of users who have
access to a shopping list

Request Type: GET Request Type: GET

Page Used On: List Edit Page Used On: Lists

Example Response:
<Items>
<I id="33" n="Butter" q="1"
c="Butter" sh="Checkers,
Rondebosch, Riverside Centre"
sid="1" p="0" u="0" usr="UserX"
uid="2" dt="11-10-2007"> Ran out
today.</I>
...
</Items>

Example Response:
<Users>
<u id="3" n="HunterU" f="Graham"
s="Hunter" e="hunter@test.com"
c="55542024" access="111"/>
...
</Users>

 24

Table 3 : The item functions of the API that are used in the Web interface

Item Operations

Item_CheckoutItems(ItemId, ListId,
UserId)

Item_GetCategories()

Function: marks items as bought Function: retrieves a list of possible item
categories

Request Type: POST Request Type: GET

Page Used On: List Edit Page Used On: List Edit, Shop Layouts

Example Response:
<id>1458</id>

Example Response:
<Categories>
<c id="4">Reminder</c>
<c id="5">Baby Care</c>
...
</Categories>

Table 4 : The shop functions of the API that are used in the Web interface

Shop Operations

Shop_AddLayout(ShopId,UserId,Layout) Shop_GetAll()

Function: adds a shop layout Function: retrieves a list of shops

Request Type: POST Request Type: GET

Page Used On: Shop Layouts Page Used On: Shop Layouts, Preferences

Example Response:
<id>8</id>

Example Response:
<Shops>
<Shop id="1" n="Checkers"
l="Riverside Centre" c="Cape
Town" s="Rondebosch"/>
...
</Shops>

Shop_GetLayout(ShopId, UserId)

Function: retrieves a shop’s layout

Request Type: GET

Page Used On: Shop Layouts

Example Response:
<Layouts>
<Layout sid="1" id="1" uid="3">
<aisle id="1">
<s>10</s><s>63</s><s>72</s>
</aisle>
<aisle id="2">
...

 25

</Layout>
</Layouts>

Data format: a layout comprises a number of
aisles. Each aisle has a number of sections
(<s></s>), each of which represents a single
item category and contains that category’s
system ID.

 26

4. EVALUATION

The Web interface was evaluated through
user testing and heuristic evaluation. This
chapter describes the design of each evalua-
tion, lists the results gathered and then dis-
cusses these results.

4 . 1 . Des i g n o f E v a l u a t i o n

4 . 1 . 1 . U s e r T e s t i n g

The user testing was a direct observation
evaluation [19], which yielded qualitative re-
sults.

The users who were involved in the
evaluation fell into one of three classes:

1. The interface “experts” who had
been involved in the design phases
earlier in the project.

2. People who are knowledgeable of
computers and technology.

3. People who are considered computer
novices.

Eight users evaluated the system: three
from the first class, two from the second and
two from the third. The users were asked
(verbally, by the author and according to a
questionnaire) to perform a series of tasks
and the author observed them, noting any
problems they had while performing the
tasks, as well as any faults that they discov-
ered in the system. As they performed the
tasks, they were also asked to interpret the
system’s feedback – for instance, what cer-
tain icons mean.

Before the actual evaluation began a pilot
study was performed using two people. The
aim to was to check that the users would un-
derstand what was being asked of them in
the evaluation. The pilot study led to several
minor changes to the phrasing of questions
and ordering of tasks, and one major change,
which involved the My Shop Layouts page.

The question involving this page asked
the evaluator to lay out a shop using a given
floor plan. However, the first user didn’t
understand the section’s description (on the
Web site), which explained what the user is
meant to do with it. After having it ex-
plained to them, they understood and sug-

gested that the description be re-written. So
it was, before the second user performed the
evaluation. However, this user had the same
problem. They suggested that instead of a
textual description, the Web site rather have
an example floor plan and it’s corresponding
Web layout. However, there was not enough
time to implement this, so it was decided that
the evaluation would be changed. Instead of
asking each tester to lay out a shop, the fea-
ture was instead discussed with them in order
to learn how they visualise a shop’s layout
and find out how they would like the feature
to function.

The final version of the evaluation ques-
tionnaire is attached as Appendix 8.1.

4 . 1 . 2 . H e u r i s t i c E v a l u a t i o n

Heuristic evaluation is a technique created as
a way of structuring expert evaluation of an
interface [19]. The idea is that the experience
of interface designers is condensed into a
number of design heuristics against which
the interface is evaluated by a usability expert.
It was created by Nielsen, who proposed 10
general heuristics (Figure 19) [28]. During
the evaluation, the expert examines the sys-
tem and rates each heuristic using Nielsen’s
severity ranking scale (Figure 20) [27].

Three users performed individual heuris-
tic evaluations. All of them are Computer
Science students; two are PhD students and
third is a second-year Masters student. All
three are working on projects that revolve
around usability. They used Nielsen’s heuris-
tics and ranking scale in their evaluations.
The heuristic evaluation sheet template is
included is included as Appendix 8.2.

Nielsen’s 10 Heuristics

1. Visibility of system status

The system should always keep users informed
about what is going on, through appropriate
feedback within reasonable time.

2. Match between system and the real world

The system should speak the users' language,
with words, phrases and concepts familiar to the
user, rather than system-oriented terms. Follow
real-world conventions, making information ap-
pear in a natural and logical order.

 27

3. User control and freedom

Users often choose system functions by mistake
and will need a clearly marked "emergency exit"
to leave the unwanted state without having to go
through an extended dialogue. Support undo
and redo.

4. Consistency and standards

Users should not have to wonder whether differ-
ent words, situations, or actions mean the same
thing. Follow platform conventions.

5. Error prevention

Even better than good error messages is a care-
ful design which prevents a problem from occur-
ring in the first place. Either eliminate error-
prone conditions or check for them and present
users with a confirmation option before they
commit to the action.

6. Recognition rather than recall

Minimize the user's memory load by making
objects, actions, and options visible. The user
should not have to remember information from
one part of the dialogue to another. Instructions
for use of the system should be visible or easily
retrievable whenever appropriate.

7. Flexibility and efficiency of use

Accelerators -- unseen by the novice user --
may often speed up the interaction for the expert
user such that the system can cater to both in-
experienced and experienced users. Allow users
to tailor frequent actions.

8. Aesthetic and minimalist design

Dialogues should not contain information which
is irrelevant or rarely needed. Every extra unit of
information in a dialogue competes with the
relevant units of information and diminishes their
relative visibility.

9. Help users recognize, diagnose, and re-
cover from errors

Error messages should be expressed in plain
language (no codes), precisely indicate the
problem, and constructively suggest a solution.

10. Help and documentation

Even though it is better if the system can be
used without documentation, it may be neces-
sary to provide help and documentation. Any
such information should be easy to search, fo-
cused on the user's task, list concrete steps to
be carried out, and not be too large.

Figure 19 : Nielsen’s 10 heuristics

Nielsen’s Severity Ranking Scale

Rating Description

0 I don’t agree that this is a usability
problem at all.

1 Cosmetic problem only. Need not
be fixed unless extra time is avail-
able on project.

2 Minor usability problem. Fixing this
should be given low priority.

3 Major usability problem. Important
to fix, so should be given high pri-
ority.

4 Usability catastrophes. Imperative
to fix this before product can be
released.

Figure 20 : Nielsen’s severity ranking

scale

4 . 2 . Resu l t s

4 . 2 . 1 . U s e r T e s t i n g

As is to be expected, some users had more
trouble using the interface than others.
However, there were several problems that
repeatedly cropped up:

1. The interface does not convey that it is
communicating with the server and
waiting for a response. This, and the
fact that there was often a delay during
this communication, meant that many
of these users believed that they had not
pressed a button or done something
properly, and clicked the button again or
began to re-do the operation.

2. Most of the users spent time searching
the screen to find functions, particularly
in the page where one edits the shop-
ping list.

3. Most users did not understand what the
right-hand pane on the shopping list
editor page is for (Figure 21).

4. There is no cursor shown when one
clicks on the “note” text area of the
“edit item” dialog (Figure 22). This re-
sulted in every user who used the screen
clicking the area multiple times to try to

 28

select it, when in fact the area was se-
lected on their first click.

5. The “Add a new reminder” form has a
field with the label “Name:” (Figure 23).
Several users mistook this to mean their
name, rather than the name of the re-
minder.

6. Some users tried to edit the date field of
the “Add a new reminder” form (Figure
24), rather than use the calendar (ac-
cessed through the button beside the
field) to select a date (Figure 25).

Figure 22 : The “edit item” dialog. The
“Note” area has been clicked, but there

is no cursor

Figure 23 : The “Name” field of the “Add
new reminder” form

Figure 24 : The non-editable date field of
the “Add a new reminder” form, with the

calendar access button next to it

Figure 25 : The date-picking calendar of
the “Add a new reminder” form

Figure 21 : The List Edit page, showing the right-hand pane

 29

7. The shop layouts screen was a big prob-

lem. The description text generally was
not understood.
The user testing also uncovered a num-

ber of bugs, though none caused the system
to be unusable. Many are simple inconsis-
tencies and can be easily corrected. An ex-
ample is: when a new list is added, its “edit”
and “add trusted users” buttons do not have
tooltips (they should); however, if the page is
reloaded, they do have these tooltips.

4 . 2 . 2 . H e u r i s t i c E v a l u a t i o n

Figure 26 lists the ratings of the three heuris-
tic evaluations and Figure 27 lists some of
the evaluators’ comments. The evaluators’
full evaluation feedback sheets are attached
as Appendix 8.3. (The evaluators filled the
sheets out on computer, so each sheet in the
appendix is a verbatim copy of their feed-
back.)

 Evaluator

Heuristic 1 2 3

1 0 3 1

2 1, 3 1 0

3 0 2 1

4 2, 1 1 0

5 1 1 2

6 2 0 1

7 1, 0 1 2

8 0 0 0

9 0 3 3

10 5 1 2

Figure 26 : The usability experts’ ratings

for each heuristic

Evaluator 1

2: The aisle list model is a good idea for
simplicity sake but you will need a graphical
layout, there is no way around this

5: Need a way to remove an aisle, also the
system crashed when I added 6 aisles other
wise the error prevention seems good
throughout the site

2: Long lists of item categories are not ideal,
is there someway to break the lists into
more manageable segments

7: Where do I start the process? You need
to control the initial experience of the work-
flow and eliminate any guesswork for new
users

7: System use is very flexible which is a
good feature as the experienced users are
able to streamline their use of the system

10: Main Screen – as this is a Web page
there are many ways a user could have
found it – there needs to be some quick
overview documentation – to set the scene

Evaluator 2

1: Login took a while and there was no indi-
cation that my login was being processed;
all the pages should have descriptions at
the top, somewhat like the MyShopLayouts
page.

2: I found some of the description on My-
ShopLayouts a little unclear (about aisles
and lanes). When I tried to add an aisle, this
confusion was continued. E.g. the drop
down lists above and below the Add An-
other Section button are confusing. What
does the bottom one refer to? Are they
north and south – but then when you add a
section it only goes on top?

3: There is no cancel or undo button for
changing something done by mistake, e.g.
where one creates a shop layout and aisle
sections

9: There is no error message if I press
ViewLayout on the MyShopLayouts page
without selecting a shop. Nothing happens.
When I tried to create a shop layout (by set-

 30

ting up an aisle and pressing Submit), I was
unable to and got an error message which
was very system specific and technical (Er-
ror Null, xml parsing error…)

Evaluator 3

5: The creation of shop layout is prone to
error since it is not clear that aisle must be
created and added one at a time

7: This is not a problem in most of the sys-
tem but the layout creation is very restrictive
visually

9: The error messages that accompany er-
rors in the layout creation are not helpful

10: The layout creation description is un-
clear

Figure 27 : A selection of the heuristic

evaluators’ comments
(Each number denotes the heuristic the comment is

about.)

4 . 3 . D i s c u s s i o n o f
R e s u l t s

Both sets of evaluators were happy with the
interface on the whole. Most of them liked
its visual design and thought it generally
functioned well.

The lack of feedback on server commu-
nication was an unfortunate oversight. It is a
clear violation of Nielsen’s first heuristic,
which is a usability fundamental: keep the
user informed of what the system is doing.
Rectifying this is a vital piece of future work.

The fact that many users searched the
screen to find functions is a difficult problem
to solve. An obvious solution is to provide
more immediate guiding help on the screen.
However, this will quickly clutter the inter-
face, especially given that there is limited
space on the screen. But it might be viable
to provide lots of on-screen help by default,
but allow the user to hide this help by select-
ing an option in their preferences (or one
could give them the option of “minimising”,
thus hiding, the help on a per-screen basis).
The aim of this would be to allow flexibility
so that novice users can easily learn the sys-

tem and advanced users can use it without
being bogged down. Currently the system is
more geared toward the latter (see Evaluator
1’s comments on heuristic 7, Figure 27
above).

The lack of understanding with the right-
hand pane on the shopping list editor page
can definitely be solved by adding an appro-
priate description to the page.

The lack of a cursor when editing an
item’s note in the “edit item” dialog is a
known Firefox bug [5], which has no defini-
tive work-around solution. The bug has
been fixed, but not in the current version of
Firefox (version 2); the solution will only
appear in Firefox version 3. The problem
does not occur in Internet Explorer. (Note:
all of those involved in the user testing used
Firefox, hence they all encountered this
problem.)

The “Add a new reminder” form
“name” field problem is easy to solve – one
simply changes the label to “Reminder
Name”. When designing the form, it was
believed that a user would automatically as-
sociate the field with the reminder they were
adding. Some users did. Those who did not
were not all one type of user: users from each
class made the mistake. This shows how
easy it is to assume that what is obvious to
one person is obvious to everyone.

The reminder date selection problem can
also be corrected by adding on-screen help
(an instruction to use the calendar). How-
ever, it was not as widely misinterpreted as
the reminder name field label. The date field
is a non-editable one and is there primarily to
provide feedback from the calendar dialog.
Most of the experienced users recognised
this and clicked the calendar button; it was
the novice users, in particular, who did not
realise this.

One heuristic evaluator commented that
the category list is perhaps too long and
needs to be broken up. However, breaking it
up is difficult – what would one break it up
into? But the comment does have merit: the
list currently consists of 73 items and is by
no means exhaustive (the categories are those
of the Pinelands Pick ‘n Pay, which is gro-
cery-orientated; the larger “all-in-one” stores
will have far more categories).

 31

The largest problem is clearly the shop
layouts page (Figure 28). Nearly everyone in
both sets of evaluators struggled with it. The
layout concept is difficult to convey through
a textual description. Undoubtedly a visual
example should be included. However, the
layout system also needs to be worked on
and improved: it is currently inflexible (e.g.,
there is no way to delete an aisle) and not
very user-friendly (the user feedback is not
particularly useful, as the heuristic evaluators
pointed out).

Figure 28 : The problematic My Shop Layouts page

 32

5. CONCLUSIONS

The key aim of the Cellphone Shopper pro-
ject is to make grocery shopping easier by
using technology to aid the process. To ac-
complish this, the project was divided into
three parts: a back-end, a Web user interface
and a cellphone interface.

The author was assigned to handle the
Web interface. The project proposal stated
that I had two sets of tasks:
� To design and implement the Web-

based end-user interface
� To perform user evaluations of the in-

terface
Both have been done over the span of

the project.
The proposal also listed the following as

the key success factors for the Web interface:
� The features specified for the system are

fully implemented and function prop-
erly.

� Users consider the interface to have
good aesthetics and be easy to use.

� The interface has good performance and
can bear an acceptable workload.
The majority of the key features pro-

posed for the system as whole have been
implemented. The following are missing:
� Pre-population of the user’s shopping

list based on their list history. This was
not implemented because the initial user
interviews, held to determine what users
would like in the system, revealed that
most users do not desire to have it.

� The ability to view statistics about the
list history. The project team decided
that this feature was not a high priority
one. Because of this, and the fact that
there was limited time to work on the
project, we never got around to imple-
menting it. However, it is something
that can easily be added to the system
later.
In addition to the proposed core fea-

tures, several suggested by the users and
evaluators were implemented. These include
reminders, favourite shops and trusted users.
The project team felt that these were useful
and interesting features worth including in
the system.

The Web interface is by no means per-
fect, as the evaluations showed. Nor is it
entirely bug free. However, its implementa-
tion is largely successful. Evaluations
showed that most of the interface is easy to
use and many of the evaluators commented
on its good aesthetics.

Finally, though not thoroughly tested,
the interface appears to perform well. Server
delays are the only performance problem,
and this could most likely be rectified by
moving the back-end and interface on to a
server outside of the UCT network.

 33

6. FUTURE WORK

This chapter lists improvements that could
be made to the system, particularly the Web
interface, as well as possible features that
could be added to it. Some of these were
suggested in the design interviews and
evaluations; the sourced is noted where pos-
sible.

News

� Add an option to set whether the system
clears the news automatically or the user
does so manually. [Design interview 2]

� Warn the user when they log into the
system if someone is doing shopping us-
ing one of the lists they have access to.
[Design interview 2]

Reminders

� Have an option to renew reminder
automatically or manually. [Design In-
terview 3]

� Reminders should perhaps be kept until
the user deletes them. Just because the
reminder has passed, it does not mean
that the user saw it; nor does it mean
that they do not want to see it now.
[Evaluation pilot study]

Layout

� The layout functionality needs to be
more flexible. It should allow deleting
and moving aisles, and perhaps factor in
the shops’ entrance(s) and exit(s).

� There should be default layouts if possi-
ble. Either the system administrators
could create these themselves or they
could choose from what users have al-
ready created.

List

� List synchronisation needs to be handled
properly. If (for example) two users are
concurrently editing a list, the system
does not update each user’s list when the
other user makes a change. The only
way for the users to see these changes is
for them to manually refresh the list.

� Allow deleted items to be added back.
Currently, when an item is deleted it be-
comes a “non-item” – it becomes a
temporary object in the system that per-
sists only for a the user’s current ses-
sion. Because of this, it cannot be added
back in the current system.

� Introduce a priority attribute for items.
This could be binary (either the item is a
priority or it isn’t) or multi-valued (i.e.,
there is a rating).

Preferences

� Allow more flexible shop management –
allow the user to specify a shop’s name,
city, suburb, location, rather than simply
list a number of shops. This would al-
low users to add their own shops, some-
thing which is particular important given
that new shops are always being built.

Help

� Build on the current help by including
more descriptions. In particular, have a
description for each page.

� Possibly provide lots of on-screen help
by default, but allow the user to hide this
help by selecting an option in their pref-
erences.

Security

� The current back-end allows direct que-
rying – one just has to know the correct
parameters and values. It should be se-
cured so that only logged in users may
access information, and only informa-
tion that applies to them.

� It may be necessary to improve the login
system’s security. Currently, only the
user’s password is encrypted – login re-
quests and responses are not, nor are the
user names within them.

Testing

� The system has not been tested on a
wide scale using many users and over a
long period of time. There are bound to
be “cross-interaction” errors that have
not been discovered. So a longer and
bigger evaluation could be conducted.

 34

Optimisation

� Each operation on the Web interface
that requires a corresponding server op-
eration leads to individual communica-
tion with the server. It should be possi-
ble to batch server requests and thus
lower server and Web traffic.

Additional interfaces

� The ability to use a camera to photo-
graph barcodes, which the system can
decode. Items could then be identified
by their barcodes, which means a whole
new range of possible functions. For
example, items can be marked off as
“bought” simply photographing their
barcodes as they are put into the trolley.

� Alternatively, camera-based recognition
of the product itself.

� A WAP-like cellphone interface could be
developed to broaden the range of cell-
phones that can use the system (because
not all phones can run J2ME applica-
tions).

� Applications could be developed for the
Microsoft Windows Mobile and Sym-
bian OS platforms.

� The cellphone application could be ex-
tended to include the ability to edit the
store layout. Editing the shop layout
while in the store would be far more
convenient than having to draw it out
and construct the layout later on a com-
puter.

Other

� Better user feedback on the Web inter-
face during server communication
▫ Loading notices and animations

should be implemented to provide
better user feedback.

� History statistics and other functions
could be implemented once the database
has been built up.

� The system could be extended to sup-
port prices. This, however, would re-
quire the shopping chains, or even indi-
vidual stores, to buy into the system, as
they control and manage the prices.
▫ Introducing prices means that one

could begin to analyse sales data.
However, this alone could dissuade

shopping chains from providing
their prices – immediate sales sta-
tistics are probably regarded as pri-
vate. (Many of these companies
are public, so their financial year
sales figures are publicly available.
However, the knowledge of how
much they sold last week, for in-
stance, is something would proba-
bly want to keep from anyone, es-
pecially competitors).

� Community features would be useful –
the ability to inform others about vari-
ous things, like a shop being out of
stock of an item or item specials and
discounts.

� “State” management functionality, par-
ticularly the management of the lifetimes
of products (to warn of expiration),
could be introduced.

 35

7. REFERENCES

[1] AjaxTrans, http://www.ajaxtrans.com/.

[2] Amazon.com,
http://www.amazon.com/.

[3] Aziz, A., and Kollhof, J. 2006. JSON-
RPC 1.1 Specification. Working draft.
August. Web site: http://json-rpc.org.

[4] Bellamy, R., Brezin, J., Kellogg, W.A.,
Richards, J. and Swart, C. Designing an
E-Grocery Application for a Palm Com-
puter: Usability and Interface Issues.

IEEE Personal Communications, 8, 4,
60-64, August 2000.

[5] Bug 167801 – Cursor (caret) sometimes
fails to appear in input text fields
(shown/painted in wrong widget). Re-
trieved 14 October 2007 from Bugzilla at
Mozilla:
https://bugzilla.mozilla.org/show_bug.c
gi?id=167801.

[6] Critical Issues for Web site Develop-
ment. Retrieved 8 July 2007 from Net
Access:
http://www.netxs.com.pk/web/critical_i
ssue_for_web_develop.html.

[7] del.icio.us, http://del.icio.us/

[8] Facebook, http://www.facebook.com/

[9] Folmer, E. 2005. Software Architecture
analysis of Usability. PhD thesis, Univer-
sity of Groningen, Mathematics and
Computer Science.

[10] Frameworks. Retrieved 8 July 2007
from Ajax Patterns:
http://www.ajaxpatterns.org/Framewor
ks.

[11] Garrett, J. J. 2005. AJAX: A new ap-
proach to web applications. Retrieved 8
July 2007 from Adaptive Path:
http://www.adaptivepath.com/publicat
ions/essays/archives/000385.php.

[12] Google Calendar,
http://calendar.google.com/.

[13] Google Mail, http://www.gmail.com/.

[14] Google Maps,
http://maps.google.com/.

[15] Google Suggest,
http://www.google.com/webhp?compl
ete=1&hl=en.

[16] Gudgin, M., Hadley, M., Mendelsohn,
N., Moreau, J., Nielsen, H., Karmarkar,
A., and Lafon, Y. 2007. SOAP Version
1.2 Part 1: Messaging Framework (Sec-
ond Edition). W3C Recommendation.
April. World Wide Web Consortium
(W3C). Web site: www.w3.org.

[17] Hixie, I. 2005. Call an apple an apple.
Retrieved 10 July 2007 from Hixie's
Natural Log:
http://ln.hixie.ch/?start=1111339822.

[18] Introducing JSON. Retrieved 10 July
2007: http://json.org/.

[19] Jones, M. and Marsden. 2006. G. Mo-
bile Design Interaction, John Wiley &
Sons, Ltd..

[20] JSON: The Fat-Free Alternative to
XML. Retrieved 10 July 2007:
http://www.json.org/xml.html.

[21] Lerner, R. M. 2001. At the Forge: In-
troducing SOAP. Linux Journal. 2001,
83es (Mar. 2001), 11.

[22] LiveMarks,
http://sandbox.sourcelabs.com/livema
rks/.

[23] Live Search, http://www.live.com.

[24] Mesbah, A. and van Deursen, A. 2007.
An Architectural Style for Ajax. In Pro-
ceedings of the Sixth Working IEEE/IFIP
Conference on Software Architecture (January
06 - 09, 2007). WICSA. IEEE Com-
puter Society, Washington, DC, 9.

[25] Morin, R. SOAP, REST and XML-
RPC. 2006. Retrieved 10 July 2007
from The RSS Blog:
http://www.kbcafe.com/rss/?guid=20
060704042846.

[26] Murray, J., Schell, D., and Willis, C.
1997. User centered design in action:
developing an intelligent agent applica-
tion. In Proceedings of the 15th Annual in-

 36

ternational Conference on Computer Documen-
tation (Salt Lake City, Utah, United
States, October 19 - 22, 1997).
SIGDOC '97. ACM Press, New York,
NY, 181-188.

[27] Nielsen, J. 2005. Severity Ratings for
Usability Problems. Retrieved 14 Oc-
tober 2007 from useit.com:
http://www.useit.com/papers/heuristic
/severityrating.html.

[28] Nielsen, J. 2005. Ten Usability
Heuristics. Retrieved 14 October 2007
from useit.com:
http://www.useit.com/papers/heuristic
/heuristic_list.html.

[29] Panic Goods,
http://www.panic.com/goods/.

[30] Ruby, S. 2003. XML-RPC, SOAP,
and/or REST. Retrieved 10 July 2007
from Intertwingly:
http://intertwingly.net/blog/1507.html

[31] Stamey, J. and Richardson, T. 2006.
Middleware development with AJAX.
Journal of Computing Sciences in Colleges.
22, 2 (Dec. 2006), 281-287.

[32] Teo, H., Oh, L., Liu, C., and Wei, K.
2003. An empirical study of the effects
of interactivity on web user attitude. In-
ternational Journal of Human-Computer
Studies. 58, 3 (Mar. 2003), 281-305.

[33] Turner, A., and Wang, C. 2007. AJAX:
Selecting the Framework that Fits. Re-
trieved 9 July 2007 from Dr. Dobb’s
Portal:
http://www.ddj.com/dept/webservices
/199203087?pgno=1.

[34] Wayner, P. 2006. Surveying open-
source AJAX toolkits. Retrieved 9 July
2007 from InfoWorld:
http://www.infoworld.com/article/06/
07/31/31FEajax_1.html.

[35] Woolworths, www.woolworths.co.za.

[36] Wu, H. and Natchetoi, Y. 2007. Mobile
shopping assistant: integration of mo-
bile applications and web services. In
Proceedings of the 16th international Confer-
ence on World Wide Web (Banff, Alberta,

Canada, May 08 - 12, 2007). WWW '07.
ACM Press, New York, NY, 1259-
1260.

[37] XML-RPC Home Page. 2003. Re-
trieved 10 July 2007:
http://www.xmlrpc.com/.

[38] XmlRpcDiscussion. 2006. Retrieved
10 July 2007 from Intertwingly:
http://intertwingly.net/wiki/pie/XmlR
pcDiscussion.

 37

8. APPEND ICES

8 . 1 . Ev a l u a t i o n Q u e s t i o n s

Evaluation Tasks and
Questions

Person:

Evaluation Number:

Pre-evaluation: explain the system.

1. Login as “eval##” using the password “eval##”.

2. What news is there?

3. Explain the My Preferences section.

4. Add a reminder to remind yourself to pay the electricity bill on 25 October.

5. Add a new list – you can give it any name.

6. Grant Robert Jones access to it.

7. Go into the list. Add an item to it. Now edit the item and attach a note to it.

8. How do you mark the item as bought? How do you check to see who added

the item?

9. Add “Apples” from your Favourites list to the list you created.

10. Select the list “List X” on the left-hand side. What does the yellow R square

mean? Who added the reminder?

11. Discuss the My Shop Layout screen using the store layout example.

 38

Cereals Sweets

Bread Bakery

ENTRANCE

 39

8 . 2 . Heu r i s t i c E v a l u a t i o n
S h e e t

Heuristic Evaluation

Heuristics

1. Visibility of system status
The system should always keep users informed about what is going on, through appropriate feedback
within reasonable time.

2. Match between system and the real world
The system should speak the users' language, with words, phrases and concepts familiar to the user,
rather than system-oriented terms. Follow real-world conventions, making information appear in a natu-
ral and logical order.

3. User control and freedom
Users often choose system functions by mistake and will need a clearly marked "emergency exit" to
leave the unwanted state without having to go through an extended dialogue. Support undo and redo.

4. Consistency and standards
Users should not have to wonder whether different words, situations, or actions mean the same thing.
Follow platform conventions.

5. Error prevention
Even better than good error messages is a careful design which prevents a problem from occurring in
the first place. Either eliminate error-prone conditions or check for them and present users with a con-
firmation option before they commit to the action.

6. Recognition rather than recall
Minimize the user's memory load by making objects, actions, and options visible. The user should not
have to remember information from one part of the dialogue to another. Instructions for use of the sys-
tem should be visible or easily retrievable whenever appropriate.

7. Flexibility and efficiency of use
Accelerators -- unseen by the novice user -- may often speed up the interaction for the expert user such
that the system can cater to both inexperienced and experienced users. Allow users to tailor frequent
actions.

8. Aesthetic and minimalist design
Dialogues should not contain information which is irrelevant or rarely needed. Every extra unit of infor-
mation in a dialogue competes with the relevant units of information and diminishes their relative visibil-
ity.

9. Help users recognize, diagnose, and recover fro m errors
Error messages should be expressed in plain language (no codes), precisely indicate the problem, and
constructively suggest a solution.

10. Help and documentation
Even though it is better if the system can be used without documentation, it may be necessary to pro-
vide help and documentation. Any such information should be easy to search, focused on the user's
task, list concrete steps to be carried out, and not be too large.

 40

Evaluation

Name:

Nielsen’s severity ranking scale (SRS)

Rating Description

0 I don’t agree that this is a usability problem at all

1 Cosmetic problem only. Need not be fixed unless extra time is available on
project

2 Minor usability problem. Fixing this should be given low priority

3 Major usability problem. Important to fix, so should be given high priority

4 Usability catastrophes. Imperative to fix this before product can be released

Heuristic Rating / Notes

1

2

3

4

5

6

7

8

9

10

 41

8 . 3 . Fu l l H e u r i s t i c
E v a l u a t i o n F e e d b a c k

Evaluation 1

Heuristic Rating / Notes

1 0: Feedback of system status is good, ie. When I created a list it was reflected that it
was successful.

2

1: Most of the concepts will be familiar to the user but they need to be confident about
how and why to use the features. If the Web site is the main configuration portal for
the system then much more info needs to be provided before it can be deployed.
3: The aisle list model is a good idea for simplicity sake but you will need a graphical
layout, there is no way around this. For your honours project the drop list model will do
but in the future work section of your write up you should mention the use of graphics.

3
0 : The user is able to perform the functions in any order which is good but you will
need to provide some guidance initially. Later on users can use the system in any or-
der once they are familiar with it.

4

2 : My Lists appears twice, once under the My Lists Tab and once under My News –
Are they the same thing?
1 : I noticed some tooltips floating over some menu options, good idea, but you need
to use them consistently throughout your Web page, the three icons shown next to a
shopping list need descriptive tooltips.

5 1 : Need a way to remove an aisle, also the system crashed when I added 6 aisles
other wise the error prevention seems good throughout the site.

6 2 : Long lists of item categories are not ideal, is there someway to break the lists into
more manageable segments.

7

1: Where do I start the process? You need to control the initial experience of the work-
flow and eliminate any guesswork for new users.
0 : System use is very flexible which is a good feature as the experienced users are
able to streamline their use of the system.

8 0 : Good, only the core features are exposed, no clutter.

9
0 : I liked the idea of moving items between my lists and previous items and the fact
that you laid them out next to each other – if a user makes a mistake they can pull the
item back into their list.

10 5 : Main Screen – as this is a Web page there are many ways a user could have found
it – there needs to be some quick overview documentation – to set the scene.

If you have any other comments, suggestions or thou ghts, please write them here.

Adding an aisle to the shop layout crashed

 42

Evaluation 2

Heuristic Rating / Notes

1

3 – Login took a while and there was no indication that my login was being proc-
essed; all the pages should have descriptions at the top, somewhat like the My-
ShopLayouts page (especially MyLists, MyReminders, MyNews). The first page I
came to (MyNews) was confusing and what news would be put in there and how
was not made clear. Occasionally, the system first said I had nothing, e.g. no lists
and then changed it to show my lists, which was a little confusing.

2

1 – Mostly this was understandable and fine. I found some of the description on
MyShopLayouts a little unclear (about aisles and lanes). When I tried to add an
aisle, this confusion was continued. E.g. the drop down lists above and below the
Add Another Section button are confusing. What does the bottom one refer to?
Are they north and south – but then when you add a section it only goes on top?

3

2 – One can only navigate by the menu – there is no back button and this would
make navigation easier. There is no way to close sections that one opens except
by reselecting the menu item (e.g. List Access section which appears on MyLists
page). There is no cancel or undo button for changing something done by mistake,
e.g where one creates a shop layout and aisle sections.

4 1 – Under MyLists Favourites is clickable to open but PreviousItems is not, which
is inconsistent.

5
1 – It seems relatively difficult to make a bad error with this system, and you dou-
ble check when I try to delete a list. The MyShopLayout page is a little error prone
because it is somewhat confusing.

6 0 – No problem here

7

1 – This seems reasonable. I like the front page with a list of lists and the news
section (if it is for today’s issues?). Adding a long shopping list would take a long
time, though, as you have to add each item, select a category, etc. Maybe there
could be an editable drop down list with categories pre-connected so that you can
quickly select items rather than type them in. (I do like the ability to copy items be-
tween lists, though, which would speed up the process)

8 0 – Nice minimalist design

9

3 – There is no error message if I press ViewLayout on the MyShopLayouts page
without selecting a shop. Nothing happens. When I tried to create a shop layout
(by setting up an aisle and pressing Submit), I was unable to and got an error
message which was very system specific and technical (Error Null, xml parsing
error…) .

10 1 – The tooltips on the icons next to personal lists don’t always appear and the
icons are not completely easy to understand.

If you have any other comments, suggestions or thou ghts, please write them here.

The system in general seems very usable. The interface is clean and attractive. Some buttons
didn’t work (e.g. Add Shop and Add User) but I assume this is functionality that you are not imple-
menting and the placing seems appropriate. I set a reminder, which the system lost, but this is
back-end I presume, not interface. The ShopLayout screen seems the most problematic.

 43

Evaluation 3

Heuristic Rating / Notes

1 1 There is no feedback indicating that registering was successful. Would be nice if
lists under MyNews and MyLists could be expanded (like file-folder hierarchies)

2 0

3 1 Users are mostly free

4 0

5 2 The creation of shop layout is prone to error since it is not clear that aisle must
be created and added one as a time

6 1 The info that appears when hovering the mouse over elements doesn’t always
show up

7 2 This is not a problem in most of the system but the layout creation is very restric-
tive visually

8 0

9 3 The error messages that accompany errors in the layout creation are not helpful

10 2 The layout creation description is unclear

If you have any other comments, suggestions or thou ghts, please write them here.

Overall the system is nice and I found not many problems with it. The lists are easy to create
(though they do disappear and reappear at times) and tie together nicely with reminders and
news. The most problematic part is the layout creation – it is very inflexible and it is difficult to
map one’s cognitive map of a shop onto a row-based series of aisles and lanes. Additionally
wrt layouts, after seeing a predefined list of shops I was kind of expecting the system to con-
tain a pre-baked layout for the shops – perhaps this makes the system too restrictive though?

